My Patient Has A Swollen Leg

PoCUS for DVT
Objectives

- Vascular Anatomy in the Lower Limb
- DVT Diagnostic Algorithm
- 2-Point PoCUS Technique
- Other causes of a Swollen Leg
Anatomy – Lower Limb

• The Superficial Femoral Vein is a DEEP vein
• It accompanies the Femoral Artery
• Popliteal Vein has 3 main tributaries
 • Anterior Tibial
 • Tibio-peroneal Trunk
 • Posterior Tibial
 • Peroneal
Popliteal Vein

- Formed at lower border of Popliteus
- Ascends through Popliteal fossa to aperture in Adductor Magnus where it become the Femoral vein
- Initially lies superficial to then lateral to Popliteal artery
- Receives tributaries from Geniculate veins and Small Saphenous vein
Superficial Femoral Vein

- As the SFV ascends in thigh it is initially lateral to the Femoral artery, then superficial, then medial in the groin

- Joined by Deep Femoral Vein 4cm below Inguinal Ligament
DVT Clinical

- Clinical presentation of a DVT can be very non-specific (swelling, pain, warmth)
- Clinical features depends on site of venous occlusion
- Homan's sign = pain on passive dorsiflexion of the ankle is a non-specific sign (e.g. calf strain)
- Many small DVTs are asymptomatic (e.g. post-op patients)
- Only 10-25% of patients with ‘suspected DVT’ will subsequently be diagnosed with DVT
DVT Prognosis

- Below knee DVT’s are rarely a source of clinically significant PE
- But, up to 1/3 of below knee DVT’s can propagate above knee
- The incidence of PE with untreated above knee DVT is 29-50%
- And most PE’s are first diagnosed at post mortem

Scarvelis, D. et al. CMAJ 2006;175:1087-1092
DVT Diagnosis

- Clinical Prediction Rule (e.g. Wells)
 - Risk factors, Symptoms and Signs
 - Reliably stratifies into probability of DVT being ‘Unlikely’ or ‘Likely’

- Algorithm Approach
 - Clinical Prediction Rule
 - D-Dimer
 - Compression Venous Ultrasound
 - +/- LMW Heparin

Table 1: Clinical model for predicting pretest probability of deep-vein thrombosis (DVT)*

<table>
<thead>
<tr>
<th>Clinical characteristic†</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active cancer (treatment ongoing, administered within previous 6 mo or palliative)</td>
<td>1</td>
</tr>
<tr>
<td>Paralysis, paresis or recent plaster immobilization of the lower extremities</td>
<td>1</td>
</tr>
<tr>
<td>Recently bedridden > 3 d or major surgery within previous 12 wk requiring general or regional anesthesia</td>
<td>1</td>
</tr>
<tr>
<td>Localized tenderness along the distribution of the deep venous system</td>
<td>1</td>
</tr>
<tr>
<td>Swelling of entire leg</td>
<td>1</td>
</tr>
<tr>
<td>Calf swelling > 3 cm larger than asymptomatic side (measured 10 cm below tibial tuberosity)</td>
<td>1</td>
</tr>
<tr>
<td>Pitting edema confined to the symptomatic leg</td>
<td>1</td>
</tr>
<tr>
<td>Collateral superficial veins (nonvaricose)</td>
<td>1</td>
</tr>
<tr>
<td>Previously documented DVT</td>
<td>1</td>
</tr>
<tr>
<td>Alternative diagnosis at least as likely as DVT</td>
<td>-2</td>
</tr>
</tbody>
</table>

*A score of 2 or higher indicates that the probability of DVT is “likely”; a score of less than 2 indicates that the probability is “unlikely.”†In patients who have symptoms in both legs, the more symptomatic leg is used.
DVT Algorithm - Logic

- We do need to Diagnose and Treat **above** Knee DVT
- 2-Point CVU PoCUS is very sensitive (97%) for **above** Knee DVT
- We don’t need to treat **below** knee DVT
 - CVU PoCUS is not sensitive (73%) for **below** knee DVT anyway.
 - So no point looking below the knee….
- But 1/3 of **below** knee DVT will propagate **above** the knee
 - However 2/3 don't propagate….
- But we can’t rescan all the negatives (only 1-2% become +ve)….
- So we need a way to choose a smaller group who we rescan
CVU - Criteria

- Experienced PoCUS clinician
- Understands the place of CVU within the algorithm
- Quality ultrasound equipment
- Ability to interpret Full Compression
CVU - Limitations

• Depth limitations / Patient habitus
• Pelvic veins are not visualised
• Operator error
• Calf DVTs not reliably visualised
• Acute on chronic DVT
2-Point PoCUS Protocol

- 2 point CVU at proximal thigh and popliteal fossa
- Performed in ED by ED Physicians
- Sensitivity similar to standard CVU = 96.8%

2-Point PoCUS Protocol

• Tilt bed 20° reverse Trendelenburg

• Patient supine, Knees bent, Hips externally rotated

• Scan in transverse plane

• Place transducer distal to inguinal ligament at mid-inguinal point

• Identify superficial femoral vein (SFV), femoral artery and greater saphenous vein (GSV)
2-Point PoCUS Protocol

- Tilt bed 20° reverse Trendelenburg
- Patient supine, Knees bent, Hips externally rotated
- Scan in transverse plane
- Place transducer distal to inguinal ligament at mid-inguinal point
- Identify superficial femoral vein (SFV), femoral artery and greater saphenous vein (GSV)
2-Point PoCUS Protocol

- Assess from 2cm proximal and 2cm distal to the junction of SFV and GSV

- **Look for visible thrombus**

- Apply compressive pressure to SFV

- If resolution suboptimal consider colour flow to help delineate vessel

- If negative, quick sweep of thigh to look for other cause of leg swelling (e.g. muscle hematoma)
2-Point PoCUS Protocol

- Assess from 2cm proximal and 2cm distal to the junction of SFV and GSV
- Look for visible thrombus
- **Apply compressive pressure to SFV**
- If resolution suboptimal consider colour flow to help delineate vessel
- If negative, quick sweep of thigh to look for other cause of leg swelling (e.g. muscle hematoma)
2-Point PoCUS Protocol

- Assess from 2cm proximal and 2cm distal to the junction of SFV and GSV
- Look for visible thrombus
- **Apply compressive pressure to SFV**
- If resolution suboptimal consider colour flow to help delineate vessel
- If negative, quick sweep of thigh to look for other cause of leg swelling (e.g. muscle hematoma)
2-Point PoCUS Protocol

- Assess from 2cm proximal and 2cm distal to the junction of SFV and GSV
- Look for visible thrombus
- Apply compressive pressure to SFV
- If resolution suboptimal consider colour flow to help delineate vessel
- If negative, quick sweep of thigh to look for other cause of leg swelling (e.g., muscle hematoma)
2-Point PoCUS Protocol

- Turn patient onto side, etc
- Identify popliteal vein
- Assess 2cm distally to trifurcation
- Look for visible thrombus
- Apply compressive pressure to SFV
- If resolution suboptimal consider colour flow to help delineate vessel
- If negative, quick sweep of calf to look for other cause of leg swelling (e.g. Baker’s cyst, muscle hematoma)
2-Point PoCUS Protocol

- Turn patient onto side
- Identify popliteal vein
- Assess 2cm distally to trifurcation
- Look for visible thrombus
- Apply compressive pressure to SFV
- If resolution suboptimal consider colour flow to help delineate vessel
- If negative, quick sweep of calf to look for other cause of leg swelling (e.g. Baker’s cyst, muscle hematoma)
2-Point PoCUS Protocol

- Turn patient onto side
- Identify popliteal vein
- Assess 2cm distally to trifurcation
- Look for visible thrombus
- Apply compressive pressure to PV
- If resolution suboptimal consider colour flow to help delineate vessel
- If negative, quick sweep of calf to look for other cause of leg swelling (e.g. Baker’s cyst, muscle hematoma)
2-Point PoCUS Protocol

- Turn patient onto side
- Identify popliteal vein
- Assess 2cm distally to trifurcation
- Look for visible thrombus
- **Apply compressive pressure to PV**
- If resolution suboptimal consider colour flow to help delineate vessel
- If negative, quick sweep of calf to look for other cause of leg swelling (e.g. Baker’s cyst, muscle hematoma)
2-Point PoCUS Protocol

- Turn patient onto side
- Identify popliteal vein
- Assess 2cm distally to trifurcation
- Look for visible thrombus
- **Apply compressive pressure to PV**
- If resolution suboptimal consider colour flow to help delineate vessel
- If negative, quick sweep of calf to look for other cause of leg swelling (e.g. Baker’s cyst, muscle hematoma)
2-Point PoCUS Protocol

- Turn patient onto side
- Identify popliteal vein
- Assess 2cm distally to trifurcation
- Look for visible thrombus
- **Apply compressive pressure to PV**
- If resolution suboptimal consider colour flow to help delineate vessel
- If negative, quick sweep of calf to look for other cause of leg swelling (e.g. Baker’s cyst, muscle hematoma)
Proximal DVT

DVT

Normal
Proximal DVT

DVT

Normal
Proximal DVT
Proximal DVT
Popliteal DVT

DVT

Normal
Popliteal DVT

Normal

DVT
Popliteal DVT
Popliteal DVT
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

50yr old female, recent long haul flight returning from holiday in Cuba - Swollen Leg
Differential Diagnosis

- DVT
- **Cellulitis**
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

50yr old female, recent long haul flight returning from holiday in Cuba - Swollen Leg
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

84yr post op Total Hip Replacement - Swollen Leg

© www.emergencyultrasound.ca
Differential Diagnosis

- DVT
- Cellulitis
- **Subcutaneous Hematoma**
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

84yr post op Total Hip Replacement - Swollen Leg
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

60yr 3 days immobility following fall - Swollen Leg
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

60yr 3 days immobility following fall - Swollen Leg
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

70yr Pain in back of Knee - Swollen Calf

© www.emergencyultrasound.ca
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

70yr Pain in back of Knee - Swollen Calf
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

70yr Pain in back of Knee - Swollen Calf
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

70yr Pain in back of Knee - Swollen Calf
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

70yr Pain in back of Knee - Swollen Calf
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

70yr Pain in back of Knee - Swollen Calf
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- **Bakers Cyst**
- Popliteal Aneurysm

70yr Pain in back of Knee - Swollen Calf
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

Axillary Vein

70yr Treated for Cellulitis 5 days - Swollen Arm
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

70yr Treated for Cellulitis 5 days - Swollen Arm

Axillary Vein
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

70yr Treated for Cellulitis 5 days - Swollen Arm
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

70yr Treated for Cellulitis 5 days - Swollen Arm
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

70yr Treated for Cellulitis 5 days - Swollen Arm
Differential Diagnosis

- DVT
- Cellulitis
- Subcutaneous Hematoma
- Muscle Hematoma
- Bakers Cyst
- Popliteal Aneurysm

Brachial Vein

70yr Treated for Cellulitis 5 days - Swollen Arm
Questions?